262 research outputs found

    A new exact closest lattice point search algorithm using linear constraints

    Get PDF
    The problem of finding the closest lattice point arises in several communications scenarios and is known to be NP-hard. We propose a new closest lattice point search algorithm which utilizes a set of new linear inequality constraints to reduce the search of the closest lattice point to the intersection of a polyhedron and a sphere. This set of linear constraints efficiently leverage the geometric structure of the lattice to reduce considerably the number of points that must be visited. Simulation results verify that this algorithm offers substantial computational savings over standard sphere decoding when the dimension of the problem is large

    Further Results on Performance Analysis for Compressive Sensing Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. In this paper, we will give further results on the performance bounds of compressive sensing. We consider the newly proposed expander graph based compressive sensing schemes and show that, similar to the l_1 minimization case, we can exactly recover any k-sparse signal using only O(k log(n)) measurements, where k is the number of nonzero elements. The number of computational iterations is of order O(k log(n)), while each iteration involves very simple computational steps

    Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n^3), or can only work efficiently when the signal is super sparse, sometimes without deterministic performance guarantees. In this paper, we propose a compressive sensing scheme with deterministic performance guarantees using expander-graphs-based measurement matrices and show that the signal recovery can be achieved with complexity O(n) even if the number of nonzero elements k grows linearly with n. We also investigate compressive sensing for approximately sparse signals using this new method. Moreover, explicit constructions of the considered expander graphs exist. Simulation results are given to show the performance and complexity of the new method

    On sharp performance bounds for robust sparse signal recoveries

    Get PDF
    It is well known in compressive sensing that l_1 minimization can recover the sparsest solution for a large class of underdetermined systems of linear equations, provided the signal is sufficiently sparse. In this paper, we compute sharp performance bounds for several different notions of robustness in sparse signal recovery via l_1 minimization. In particular, we determine necessary and sufficient conditions for the measurement matrix A under which l_1 minimization guarantees the robustness of sparse signal recovery in the "weak", "sectional" and "strong" (e.g., robustness for "almost all" approximately sparse signals, or instead for "all" approximately sparse signals). Based on these characterizations, we are able to compute sharp performance bounds on the tradeoff between signal sparsity and signal recovery robustness in these various senses. Our results are based on a high-dimensional geometrical analysis of the null-space of the measurement matrix A. These results generalize the thresholds results for purely sparse signals and also present generalized insights on l_1 minimization for recovering purely sparse signals from a null-space perspective

    On the Complexity of Exact Maximum-Likelihood Decoding for Asymptotically Good Low Density Parity Check Codes: A New Perspective

    Get PDF
    The problem of exact maximum-likelihood (ML) decoding of general linear codes is well-known to be NP-hard. In this paper, we show that exact ML decoding of a class of asymptotically good low density parity check codes — expander codes — over binary symmetric channels (BSCs) is possible with an average-case polynomial complexity. This offers a new way of looking at the complexity issue of exact ML decoding for communication systems where the randomness in channel plays a fundamental central role. More precisely, for any bit-flipping probability p in a nontrivial range, there exists a rate region of non-zero support and a family of asymptotically good codes which achieve error probability exponentially decaying in coding length n while admitting exact ML decoding in average-case polynomial time. As p approaches zero, this rate region approaches the Shannon channel capacity region. Similar results can be extended to AWGN channels, suggesting it may be feasible to eliminate the error floor phenomenon associated with belief-propagation decoding of LDPC codes in the high SNR regime. The derivations are based on a hierarchy of ML certificate decoding algorithms adaptive to the channel realization. In this process, we propose an efficient O(n^2) new ML certificate algorithm based on the max-flow algorithm. Moreover, exact ML decoding of the considered class of codes constructed from LDPC codes with regular left degree, of which the considered expander codes are a special case, remains NP-hard; thus giving an interesting contrast between the worst-case and average-case complexities

    Compressed Sensing over the Grassmann Manifold: A Unified Analytical Framework

    Get PDF
    It is well known that compressed sensing problems reduce to finding the sparse solutions for large under-determined systems of equations. Although finding the sparse solutions in general may be computationally difficult, starting with the seminal work of [2], it has been shown that linear programming techniques, obtained from an l_(1)-norm relaxation of the original non-convex problem, can provably find the unknown vector in certain instances. In particular, using a certain restricted isometry property, [2] shows that for measurement matrices chosen from a random Gaussian ensemble, l_1 optimization can find the correct solution with overwhelming probability even when the support size of the unknown vector is proportional to its dimension. The paper [1] uses results on neighborly polytopes from [6] to give a ldquosharprdquo bound on what this proportionality should be in the Gaussian measurement ensemble. In this paper we shall focus on finding sharp bounds on the recovery of ldquoapproximately sparserdquo signals (also possibly under noisy measurements). While the restricted isometry property can be used to study the recovery of approximately sparse signals (and also in the presence of noisy measurements), the obtained bounds can be quite loose. On the other hand, the neighborly polytopes technique which yields sharp bounds for ideally sparse signals cannot be generalized to approximately sparse signals. In this paper, starting from a necessary and sufficient condition for achieving a certain signal recovery accuracy, using high-dimensional geometry, we give a unified null-space Grassmannian angle-based analytical framework for compressive sensing. This new framework gives sharp quantitative tradeoffs between the signal sparsity and the recovery accuracy of the l_1 optimization for approximately sparse signals. As it will turn out, the neighborly polytopes result of [1] for ideally sparse signals can be viewed as a special case of ours. Our result concerns fundamental properties of linear subspaces and so may be of independent mathematical interest

    Guarantees of Total Variation Minimization for Signal Recovery

    Full text link
    In this paper, we consider using total variation minimization to recover signals whose gradients have a sparse support, from a small number of measurements. We establish the proof for the performance guarantee of total variation (TV) minimization in recovering \emph{one-dimensional} signal with sparse gradient support. This partially answers the open problem of proving the fidelity of total variation minimization in such a setting \cite{TVMulti}. In particular, we have shown that the recoverable gradient sparsity can grow linearly with the signal dimension when TV minimization is used. Recoverable sparsity thresholds of TV minimization are explicitly computed for 1-dimensional signal by using the Grassmann angle framework. We also extend our results to TV minimization for multidimensional signals. Stability of recovering signal itself using 1-D TV minimization has also been established through a property called "almost Euclidean property for 1-dimensional TV norm". We further give a lower bound on the number of random Gaussian measurements for recovering 1-dimensional signal vectors with NN elements and KK-sparse gradients. Interestingly, the number of needed measurements is lower bounded by Ί((NK)12)\Omega((NK)^{\frac{1}{2}}), rather than the O(Klog⁥(N/K))O(K\log(N/K)) bound frequently appearing in recovering KK-sparse signal vectors.Comment: lower bounds added; version with Gaussian width, improved bounds; stability results adde
    • …
    corecore